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Abstract 

Extreme value theory models have found applications in myriad fields. Maximum likelihood (ML) 

is attractive for fitting the models because it is statistically efficient and flexible. However, in small 

samples, ML is biased to O(Nï1) and some classical hypothesis tests suffer from size distortions. 

This paper derives the analytical Cox-Snell bias correction for the Generalized Extreme Value 

(GEV) model, and for the modelôs extension to multiple order statistics (ñGEVrò). Using simula-

tions, the paper compares this correction to bootstrap-based bias corrections, for the Generalized 

Pareto, GEV, and GEVr. It then compares eight approaches to inference with respect to primary 

parameters and extreme quantiles, some including corrections. The Cox-Snell correction is not 

markedly superior to bootstrap-based correction. The likelihood ratio test appears most accurately 

sized. The methods are applied to the distribution of geomagnetic storms. 

 

Keywords: Extreme value theory, Generalized Pareto Distribution, Generalized Extreme Value 
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1. Introduction  
Extreme value theory (EVT) has found applications in myriad fields, for modeling everything from 

product failures to bear markets to space weather. Its appeal lies in its marshalling of rigorous 

asymptotic statistical theory to extrapolate distributions of extreme events from historical data. Yet 

this appeal contains a tension: almost by definition, historical data on extremes is sparse. Many 

EVT applications therefore use large-sample theory to extrapolate from small samples. 

This tension manifests in one common approach in EVT, fitting the generalized Pareto 

(GP) or generalized extreme value (GEV) distribution to data using maximum likelihood (ML). 

ML has practical advantages. It comes with well-developed machinery for inference. And it natu-

rally accommodates non-stationary models, in which primary parameters depend flexibly on co-
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variates. But ML is biased to order ὔ , where ὔ is sample size (Cox and Snell, 1968). Distri-

butions of test statistics in small samples can also deviate appreciably from their asymptotic lim-

its, causing size distortions. And when performing estimation and inference with respect to ex-

treme quantiles, these errors can play across orders of magnitude. The small-sample short-com-

ings of ML may help explain why researchers have developed many alternatives for EVT distri-

butions, including method of moments (Hosking and Wallis 1987), probability-weighted mo-

ments (Landwhr, Matalas, and Wallis, 1979; Hosking, Wallis, and Wood, 1985), penalized ML 

(Coles and Dixon, 1999), ñelemental percentilesò (Castillo and Hadi, 1997), ñlikelihood mo-

mentsò (Zhang, 2007), and a quasi-Bayesian method (Zhang and Stephens, 2009). Most of these 

methods trim the distribution of the estimators by incorporating priors about the parametersðin a 

sense, reducing errors by partially assuming them away. Yet except for penalized ML, none of 

these alternatives easily generalizes to non-stationary models. The alternatives are thus impracti-

cal in many contexts, e.g., where seasonality and long-term trends need to be incorporated. 

This paper tries to ñfixò ML instead of bypassing it, hoping to reduce its small-sample im-

perfections while retaining its practical advantages. To this end, the paper develops and tests vari-

ous post-estimation corrections to ML-based point estimates and tests. Three EVT models are 

considered: the GP, for exceedances of a threshold; the GEV, for block maxima; and the exten-

sion of the GEV to multiple order statistics, such as the top ὶ observations in each block, and 

here labeled the GEVr. The corrections are of two main types: analytical Cox-Snell (1968) and 

bootstrap-based. The Cox-Snell correction for the GEV and GEVr models have not been pub-

lished, although Hosking, Wallis, and Wood (1985) appear to have derived it for the stationary 

GEV. 

This paper is most allied with Giles, Feng, and Godwin (2016). They compute the Cox-
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Snell bias correction for the stationary GP, measure its impact on the bias and mean-squared error 

(MSE) of ML in simulations, and compare to a parametric bootstrap and other methods. Here I do 

the same for the GEV and GEVr, which proves a much more complex task with regard to the 

Cox-Snell correction. I also expand the investigation from bias to inference as well. Through 

Monte Carlo simulation, I examine whether bias corrections improve the size of Wald tests of hy-

potheses about the primary parameters, as well as extreme quantiles (such as the magnitude of a 

100-year flood). Finally, in broadening the scope to inference, I also test bootstrap-based correc-

tions to confidence intervals, notably the bias-corrected and accelerated (BCa) confidence inter-

vals of Efron (1987). 

The Monte Carlo investigation produces a few surprises. While the corrections indeed re-

duce the bias of ML estimates of standard EVT model parameters, the corrections do not reliably 

reduce bias in the estimation of extreme quantiles, which are often more important. As for infer-

ence, none of the corrections to Wald-based confidence intervals for the return level is as well-

sized as the classical likelihood ratio (LR) test, although the BCa also performs well for the GEV 

for most positive values of the extremal index (defined just below). Indeed, the LR testôs size is so 

close to ideal, at least at the 0.05 significance level checked here, as to cast doubt on the need for 

alternatives or corrections to classical ML. 

The sections of this paper define the EVT distributions of interest, provide a general recipe 

for Cox-Snell corrections for these distributions, report Monte Carlo simulations of these and 

more-established corrections, and illustrate with an application to geomagnetic disturbances. 

2. Extreme value distributions  
The generalized Pareto (GP) distribution is used to model exceedances over a threshold (Pickands, 
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1975), such as observations in the right tail of an empirical distribution. The cumulative distribu-

tion function (cdf) can be written 

Ὃ ᾀȠÌÎ„ȟ‚ ρ ό 
where 

ό
ρ ‚

ᾀ ‘

„

ϳ

if ‚ π

Ὡ if ‚ π

 

The threshold ‘ is not listed as a parameter of Ὃ  because it cannot be identified by ML esti-

mation. The support of the GP is restricted to ᾀ ‘ and, if ‚ π, to ᾀ ‘ „‚ϳ. We take 

ÌÎ„ rather than „ as the primary scale parameter because this is more natural when extending to 

nonstationary models in which the scale parameter may depend (linearly) on covariates. The ex-

tremal index ‚ is usually of primary interest since it determines the shape of the tail, hence the 

frequency of extremes. 

Using subscripts to indicate differentiation, we can write the GP probability density func-

tion (pdf) as 

 Ὣ ᾀȠÌÎ„ȟ‚ ό (1) 

where we note that ό ό „ϳ . 

Just as the family of normal distributions constitutes the asymptotic model for averaged 

random variables, and is closed under taking of averages, the GP family is closed under ñtaking of 

tails,ò e.g., left-truncation. In particular, if ᾀ ͯ Ὃὖ‘ȟÌÎ„ȟ‚ and ‘ ‘, then ᾀ ‘ȿᾀ

‘ ͯ '0‘ȟÌÎ„ ‚‘ ‘ ȟ‚. This provides intuition for the GP as an asymptotic model for 

tail distributions. 

Using the theory of point processes, several distributions can be derived from the GP for 

to model order statistics of large blocks of data (Coles, 2001). For example, if some member of 
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the GP family is a good model for the right tail of some unknown distribution, then one can com-

pute the probability that in a block of, say, 100 draws from the full distribution, exactly one ex-

ceeds an extreme level ᾀ. This leads to a model for block maxima, namely the generalized ex-

treme value (GEV) distribution, whose cdf is: 

 Ὃ ᾀȠ‘ȟÌÎ„ȟ‚ Ὡ  

where now ‘ is a directly estimable parameter. The GEVôs support is Њȟ‘ „Ⱦ‚ if ‚ π 

and to ‘ „Ⱦ‚ȟЊ  if ‚ π, and is unbounded if ‚ π. The pdf is: 

 Ὣ ᾀȠ‘ȟÌÎ„ȟ‚ Ὡ ό  (2) 

More generally, we can model the ὶ largest observations in a block (Weissman, 1978). 

Label them ὂ ᾀ ȟȣȟᾀ , in descending order. Defining ό  in analogy with ό above, 

the joint pdf for ὂ is 

 Ὣ ὂȠ‘ȟÌÎ„ȟ‚ Ὡ Б ό  (3) 

The corresponding cdf has no closed form (Coles, 2001). 

Finally, in working with the GEVr, it will be useful to have the model for the ὶth order 

statistic alone, which we call ñGEV(r)ò: 

 Ὃ ᾀȠ‘ȟÌÎ„ȟ‚ Ὡ В
Ȧ
ό   

Differentiating, the pdf works out to 

Ὣ ᾀȠ‘ȟÌÎ„ȟ‚
ρ

ɜὶ
Ὡ ό ό  

where ɜẗ is the gamma function. 

3. Computing the Cox-Snell bias estimate for the GP, GEV, and GEVr 
Cox and Snell (1968) derive a formula for the ὕὔ  bias of the general maximum likelihood 

estimator (MLE). To state it, define these matrices of second- and third-order cumulants: 

ἕ % ⱣɳÌÎὒ 
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ἕȟ % ⱣɳÌÎὒἆ ⱣɳÌÎὒ 

ἕ % ⱣɳÖÅÃɳⱣÌÎὒ  

where ὒ is the likelihood, Ᵽ is the vector of parameters, Ᵽɳ is the gradient operator, and expec-

tations are taken over the distribution of the data. Then, in the formulation of Cordeiro and Klein 

(1994), the Cox-Snell bias of the MLE is 

 Ἄ ἕ ἕȟ ἕ ÖÅÃἕ  (4) 

Given a likelihood model and an ML estimate Ᵽ, the bias can be estimated analytically, 

by calculating ἕ , ἕȟ, and ἕ  at Ᵽðthough this can be quite complicated in practice. Or the 

bias can be estimated through bootstrapping (Horowitz, 2001), which is algorithmically simpler 

but more computationally intensive. In this case, the parametric bootstrap, which draws from the 

distribution determined by Ᵽ, is preferred over a non-parametric bootstrap that resamples the 

data, because the parametric bootstrap proves more precise in Monte Carlo simulations (Horo-

witz, 2001). 

The analytical Cox-Snell and parametric bootstrap corrections are both developed and 

tested here for EVT distributions. In both methods, having obtained a bias estimate Ἄ, we com-

pute the corrected ML estimator Ᵽ  Ᵽ Ἄ. The supplement develops a general approach to 

computing the Cox-Snell correction for the GP, GEV, and GEVr models, with an extension to 

non-stationary models. The procedure proves complex enough for the GEV and GEVr that the 

steps are not combined into a single formula. Rather, an algorithmic approach is proposed and im-

plemented, which expressed second and third derivatives of ÌÎὒ as linear combinations of terms 

of a common form. Then a formula is derived for the expectation of such terms. 

Moving from estimation to inference, analytical corrections that incorporate third or 

higher moments have also been developed for standard test statisticsðthe likelihood ratio (LR), 
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the Wald, and the Rao/score/Lagrange multiplierðin order to bring their small-sample distribu-

tions closer to the asymptotic … ones (Bartlett, 1937; Cordeiro and de Paula Ferrari, 1991). 

However, these appear even more complicated to apply to EVT distributions than the Cox-Snell 

bias correction, and are not investigated here. 

4. Testing  
To test the efficacy of these analytical bias corrections and compare them to alternatives with 

respect to estimation and inference, I run Monte Carlo simulations. All simulated distributions are 

stationary, with ‘ ÌÎ„ π. ‚ ranges from πȢυ to ρȢπ in increments of 0.1. For each 

value of ‚, and for each of the GP, GEV, and GEV5 distributions, I generate 50,000 pseudoran-

dom data sets of size 50. (Varying sample size affects only the scale of the effects, not the quali-

tative patterns.) To each data set, I apply three estimators, reporting average and root-mean-

squared error: 

¶ ML 

¶ ML with the Cox-Snell analytical correction. 

¶ ML with parametric bootstrapïbased bias correction, based on 1,000 replications. 

All estimation is performed with my ñextremeò package for Stata, which is available on the Sta-

tistical Software Components archive. 

Following Giles, Feng, and Godwin (2016), I only apply the Cox-Snell correction when 

the ML estimate ‚ exceeds πȢς. As explained in the supplement, the Cox-Snell correction di-

verges as ‚Ȣ ρσϳ . In practice, the smaller the sample, the farther from this limit does the diver-

gence begin. As the test results will show, πȢς is a reasonably conservative threshold for mak-

ing the correction. Imposing this cut-off leaves an artifact in simulations: a true value of ‚

πȢς can lead to some replications with ‚ below πȢς and some above, so that Monte Carlo 
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results mix together corrected and uncorrected estimates, and variance rises around this value. 

In addition, the simulations examine the impact on inference, which matters more than 

bias in most EVT applications. In particular, inference with respect to extreme quantiles (return 

levels) is usually central. For an EVT cdf Ὃ, and occurrence probability ὴ, the return level ᾀḳ

Ὃ ρ ὴ works out to 

 ᾀ ‘ „
 if ‚ π 

ÌÎό if ‚ π
 (5) 

where for the GP, ό  ρὴϳ , and for the GEV and GEVr, ό ρÌÎρ ὴϳ . Note that for 

the GP, ὴ is the probability of an event exceeding the magnitude ᾀ conditional on its inclusion 

in the tail distribution being modeled. So a given ὴ implies a more rarified stratum for the GP 

than for the GEV and GEVr. The simulations therefore investigate confidence intervals for ᾀȢ  

under the GP and ᾀȢ  under the GEV and GEVr. 

The following procedures are used to construct confidence intervals of nominal 0.05 sig-

nificance for ‘, ÌÎ„, ‚, and ᾀ: 

¶ The MLE, followed by Wald tests, using the delta method for ᾀ. 

¶ The same, after Cox-Snell correction to the point estimates of the primary parameters. 

¶ The same, but instead after bootstrap-based correction to the point estimates and covariance 

matrix of the primary parameters (ñbootstrap-zò or ñbootstrap correction with normal ap-

proximationò; Efron, 1981). The bootstrapping is parametric. 

¶ Bootstrap percentileïbased without bias correction (bootstrap-percentile; Efron, 1987). For 

a significance level ð0.05 in this caseðconfidence intervals span between the ρ

ρ  ςϳ  and ρ  ςϳ  quantiles of the bootstrapped empirical distribution. 

¶ That, with bias correction, giving the bias-corrected percentile (BC) method of Efron 
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(1987). 

¶ That, with acceleration, giving the bias-corrected with acceleration (BCa) method of Efron 

(1987). This, like the Cox-Snell correction, incorporates information from third moments. 

¶ The Rao score/Lagrange multiplier test. Carrying this out requires re-fitting the MLE while 

imposing null constraints. Constraining ᾀ is normally difficult since it is nonlinear in the 

primary parameters. Therefore, for this step, the models are reparameterized via (5) in 

terms of ‘, ᾀ, and ‚ (Coles, 2001). 

¶ A likelihood ratio test, imposing the null in the same way. 

These tests are chosen in part for practicality: essentially all are readily extended to nonstationary 

models, in which the primary parameters depend linearly on covariates. The one caveat is that the 

reparameterization required to perform the Rao and LR tests make it impossible to model ÌÎ„ as 

linear covariates, since it removed from the model; as partial compensation, ᾀ could be so mod-

eled instead. 

Results are presented graphically in Figures 1ï3 and numerically in Tables 1ï3. The top 

two rows of the first column of Figure 1 confirm that under the standard parameterization of the 

GP, ML is upward-biased for ÌÎ„ and downward-biased for ‚ (Hosking and Wallis, 1987). 

Both the Cox-Snell and parametric bootstrap corrections reduce this bias by an order of magni-

tude. Meanwhile, they hardly affect root-mean-squared error, except that for ‚ πȢς, the Cox-

Snell correction increases RMSE, as discussed above. 

Moving to estimation of a return level, ᾀȢ , brings some surprises. (See bottom row of 

Figure 1. Because ᾀȢ  grows rapidly with ‚ȟ for legibility, its bias and RMSE are divided by the 

true value of ᾀȢ  before graphing.) Despite substantially reducing bias in estimation of ÌÎ„ and 
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‚, neither correction clearly improves estimation of the derived parameter ᾀȢ . Where ML under-

estimates for ‚ πͯȢτ and overestimates otherwise, the corrections lead to more universal over-

estimation. Meanwhile, the corrections slightly increase RMSE. 

We look next at the performance of these and additional corrections on inference, and also 

bring in the classical Rao and LR methods for comparison. For ÌÎ„ (top-right of Figure 1), the 

ordinary Wald test after classical ML only slightly over-rejects across the full range for ‚. Cox-

Snell bias correction worsens its performance for ‚ πȢς and improves it for ‚ πȢς. For boot-

strap-based bias correction, the cross-over point to improvement is at ‚ πȢπ. The two other 

bootstrap-based inference methods, BC and BCa, perform similarly. As for classical methods, the 

Rao test after uncorrected ML consistently performs worse than the Wald while the LR test con-

sistently performs better. For the ‚ parameter (last columns, 2nd row of Figure 1), the Wald 

proves more under-sized, which leaves more room for the other methods to improve on it. Essen-

tially all alternative do improve on it when ‚ π, except for the Rao. Arguably performance in 

this range matters more than performance when ‚ π, since when the extremal index is nega-

tive, the GP puts a hard upper bound on extreme behavior. 

Finally, we examine the reliability of inference with respect to ᾀȢ . See the bottom right 

of Figure 1 as well as Table 4. While both the Cox-Snell and the bootstrap-z bias corrections im-

prove coverage, cutting the Wald-based rejection rate from 0.15 to roughly 0.10 for positive ‚, 

both are surpassed by other methods. Among the bootstrap-based methods, BCa performs best for 

‚ π, although even it tends to over-reject. The LR test does best overall, being sized close to the 

ideal across the full range of values for ‚. 

The story is similar for the GEV and GEVr (see Figures 2 and 3, Tables 2, 3, 5, and 6). 

The corrections indubitably reduce bias for the primary parameters while costing little in RMSE. 
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But they do not substantially improve test size for the primary parameters. For the derived param-

eter ᾀȢ , they reduce bias at high values, but again fall short of other methods when it comes to 

inference. Notably, the BCa correction now does as well as the LR for ‚ π (bottom right of the 

two figures). 

5. Application  
The sun frequently emits clouds of magnetically charged plasma, which are called coronal mass 

ejections (CMEs). Some collide with the earth, and with enough speed to generate large-scale 

perturbations and local turbulence in the magnetic field, especially at high latitudes. Some experts 

have warned that industrial civilization is vulnerable to a major ñgeomagnetic storm,ò the Achilles 

heels including high-voltage power transformers and global positioning system (GPS) satellites 

(Baker et al., 2013). Notable storms in the industrial era include the one in March 1989, which 

disabled two large transformers in Québec and caused a large-scale blackout for ~12 hours; and 

the ñCarringtonò event of 1859 (Riley, 2012), which was less well measured, but generally thought 

to be stronger. 

Several authors have applied EVT methods to estimate recurrence rates of such extreme 

events (Tsubouchi and Omura, 2004; Thomson, Dawson, and Reay, 2011; Riley, 2012; Kataoka, 

2013). Tsubouchi and Omura fit the GP and GEV to the storm-time disturbance index (Dst), 

which measures the hourly average depression in the magnetic field at the surface of the earth in 

the equatorial region. The Dst began in 1959 and attained its record low during the 1989 storm, at 

ï589 nanotesla (nT). Tsubouchi and Omura estimate the return rate for this strength level using 

ML and perform inference using Wald tests. 

Here, I extend that analysis in several ways. I continue the Dst series forward from 2003 to 

2014. And I rectify a discrepancy between the methods of Tsubouchi and Omura as described, 
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and as carried out. Specifically, I ñdeclusterò the data: any two Dst readings exceeding 100 nT in 

absolute magnitude within 48 hours of each other are considered part of the same event, whose 

magnitude is taken to be the largest Dst within its duration.1 This filtration is designed to reduce 

serial correlation. Applying it to the data through 2014 yields 373 events, or an average 6.46/year. 

I focus on the return rate for events surpassing ï850 nT, which is Siscoe, Crooker, and Clauerôs 

(2006) estimate for the great Carrington event of 1859. 

To select the lower threshold for the GP-modeled subsample, I follow a procedure de-

scribed in Coles (2001). The mean exceedance of a '0‘ȟÌÎ„ distribution over its lower limit 

‘ is „ ρ ‚ϳ . Recall that left-truncating such a distribution at ‘ yields another 

one, '0‘ȟÌÎ„ ‚‘ ‘ ȟ‚. It follows that left-truncating a GP distribution raises the mean 

exceedance „ ‚‘ ‘ ρ ‚ϳ . As a result, when modeling the tail of an unknown distri-

bution, once the threshold is high enough that GP-like behavior has set in, raising the threshold 

further should affect the mean exceedance of the remaining observations linearly. A mean resid-

ual life plot (not shown), which computes the mean Dst exceedance as a function of threshold, 

suggests that linearity sets in at |Dst| = 150. 133 of the 373 events clear this threshold, and they 

constitute the subsample for EVT modeling. 

GP modeling results appear in Table 7. Fitting a stationary model to this subsample with 

ML (column 1) yields a point estimate for ‚ of 0.022, with a Wald standard error of 0.103, which 

makes ‚ indistinguishable from 0. In other words, we cannot reject the hypothesis that extreme 

geomagnetic disturbances are exponentially distributed. The bottom of column 1 presents several 

derived statistics and tests. First, we see that a fatter-tailed power law distribution, which arises in 

 

1 The discrepancy became apparent in replication and one of the authors confirmed it. 
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the GP family when „ ‘‚, can be confidently ruled out by a Wald test. This finding chal-

lenges the power law distribution assumption in Riley (2012) and Kataoka (2013). Meanwhile, 

the model fit implies a 100-year return level of ï572 nT, essentially the same as that of the 1989 

storm. And it points to a 0.039%/decade return rate for Carrington-sized events. 

Next, I experimentally add covariates to control for factors that may influence the fre-

quency and severity of geomagnetic disturbances: the 11-year sun spot cycle, which is loosely as-

sociated with CME activity (Gopalswamy, 2006), and a semiannual cycle with peaks at the equi-

noxes, when CME impacts most disrupt the geomagnetic field. First, the variables are added as 

predictors of ÌÎ„, then of ‚ ÃÏÌÕÍÎÓ ς ÁÎÄ σ. In neither case do they significantly increase 

the explanatory power of the model, according to Wald and LR tests (the latter reported in the 

ñH0: exclude covariatesò row of the table). Column 4 returns to the stationary model and applies 

the Cox-Snell correction to the point estimates. This modestly increases the 100-year storm mag-

nitude, to ï593 nT, and nearly doubles the estimated return rate of Carrington-scale storms, to 

0.071%/decade. 

I turn next to inference about such extremes. Figure 4 presents points estimates and 95% 

confidence intervals for the 100-year geomagnetic storm magnitude using all methods tested in 

the previous section. Shading depicts p values and red dots show point estimates. The figure sug-

gests that inferences based on the Wald test could to a degree feed complacency: where the Wald 

95% confidence interval covers ~250ï600 nT, the LR-based one, which the simulations suggest is 

better sized, spans ~325ï750 nT. Among the other methods, the BCa approximates the LR most 

closely. 

Finally, I flip  the empirical question for inference, from the return level for a given return 

rate (what is a once-a-century storm?) to the return rate for a given return level (how often does a 
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Carrington-scale event recur?). Figure 5 plots the empirical complementary cdf (i.e., one minus 

the cdf) of the 373-event sample, starting at |Dst| = 120 nT. Riley (2012) fits a power law to a sim-

ilar data set, starting at 120; an analogous fit is depicted here in purple. The Cox-Snellïcorrected 

GP fit reported in Table 7, column 4, is also rendered, in orange. Then, rather as the previous sec-

tion reparameterized EVT models to replace ÌÎ„ with the return level ᾀ, the GP is now repa-

rameterized to introduce ὴ as a primary parameter, holding ᾀ fixed. This reformulation facili-

tations imposing hypotheses about the return rate ὴ for a given return level ᾀ, and so allows 

one to perform inference with respect to them using the LR test. Confidence intervals derived by 

inverting this test at various return levels are drawn as orange diamonds in Figure 5. For legibility, 

an inset to the figure vertically magnifies the right tail. There, we see that GP fits the historical 

record better than the power law. Where the power law fit implies a return rate for Carrington-

scale events (|Dst| > 850) of 0.3%/event, or 17.6%/decade, the GP-based LR tests generate a 95% 

confidence interval of [0.00%, 0.20%] per event, or [0.00%, 11.58%] per decade. If major geo-

magnetic storms indeed pose risks to industrial civilization (a question beyond the scope of this 

paper), then the high end of that range still represents a non-trivial risk. 

6. Conclusion  
Both the analytical and bootstrap bias corrections succeed, in the narrow sense that in small sam-

ples, they greatly improve on ML point estimates for the primary parameters. And they do so while 

staying within the flexible ML modeling framework. Both also reduce the under-sizing of Wald-

based confidence intervals for primary parameters. The bootstrap-based correction works more 

reliably for negative values of the extremal index, where the analytical correction diverges. 

However, bias correction alone does not lead to optimal inference within the ML estima-
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tion framework for EVT models, especially when extreme quantiles matter most. One of the sim-

plest approaches to inference, the classical LR test, performs best across the full range of extremal 

index values tested (πȢυ to ρ). The BCa also performs reasonably well when the extremal index 

is positiveði.e., when there is no upper bound on extremesðespecially for the GEV and GEVr. 
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Figure 1. Estimator performance for GP distribution (. υπȟÌÎ„ π 
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Figure 2. Estimator performance for GEV distribution (. υπȟÌÎ„ ‘ π 

 



20 

Figure 3. Estimator performance for GEV5 distribution (. υπȟÌÎ„ ‘ π 

 



21 

Figure 4. Point estimates and 95% confidence intervals for the magnitude of 100-

year geomagnetic storm (absolute Dst index, nT) 

 

 

Figure 5. Complementary cumulative distribution function for extreme Dst events, 

1957ï2014, empirical, and as modeled by GP and power law fits 
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Table 1. Bias, root-mean-squared error, and Ŭ = 0.05 rejection rates of estimators of GP distribution 
 ML/Wald Cox-Snell-corrected BS-corrected 

 ln ů ɝ z.05 ln ů ɝ z.05 ln ů ɝ z.05 

ɝ = ï0.5 0.0560 ï0.0804 ï0.0377 0.0558 ï0.0802 ï0.0374 0.0222 ï0.0179 0.0222 

 (0.188) (0.162) (0.110) (0.189) (0.163) (0.109) (0.210) (0.174) (0.111) 

 [0.056] [0.072] [0.164] [0.057] [0.073] [0.163] [0.150] [0.154] [0.127] 

ɝ = ï0.3 0.0519 ï0.0745 ï0.0556 0.0444 ï0.0649 ï0.0431 0.0025 0.0005 0.0348 

 (0.203) (0.168) (0.194) (0.213) (0.179) (0.196) (0.203) (0.160) (0.206) 

 [0.072] [0.108] [0.159] [0.084] [0.125] [0.157] [0.082] [0.086] [0.106] 

ɝ = ï0.1 0.0436 ï0.0650 ï0.0717 0.0111 ï0.0203 0.0165 ï0.0012 0.0027 0.0575 

 (0.214) (0.174) (0.356) (0.222) (0.188) (0.387) (0.207) (0.158) (0.380) 

 [0.068] [0.112] [0.150] [0.075] [0.116] [0.139] [0.057] [0.055] [0.092] 

ɝ = 0.0 0.0387 ï0.0608 ï0.0786 0.0024 ï0.0085 0.0519 ï0.0022 0.0022 0.0763 

 (0.221) (0.183) (0.484) (0.222) (0.185) (0.524) (0.214) (0.166) (0.516) 

 [0.069] [0.112] [0.145] [0.069] [0.115] [0.121] [0.055] [0.051] [0.090] 

ɝ = 0.2 0.0333 ï0.0536 ï0.0621 0.0014 ï0.0025 0.1510 ï0.0008 0.0021 0.1717 

 (0.234) (0.199) (0.925) (0.228) (0.189) (0.995) (0.228) (0.186) (1.002) 

 [0.064] [0.105] [0.144] [0.055] [0.058] [0.105] [0.054] [0.055] [0.094] 

ɝ = 0.4 0.0280 ï0.0493 ï0.0023 0.0020 ï0.0034 0.3259 ï0.0012 0.0012 0.3567 

 (0.249) (0.220) (1.761) (0.244) (0.210) (1.908) (0.244) (0.210) (1.924) 

 [0.063] [0.098] [0.146] [0.056] [0.068] [0.110] [0.055] [0.059] [0.102] 

ɝ = 0.6 0.0218 ï0.0435 0.2179 ï0.0009 ï0.0008 0.7444 ï0.0040 0.0033 0.7873 

 (0.262) (0.243) (3.408) (0.259) (0.236) (3.725) (0.259) (0.235) (3.750) 

 [0.060] [0.092] [0.146] [0.056] [0.070] [0.116] [0.055] [0.061] [0.109] 

ɝ = 0.8 0.0237 ï0.0433 0.7831 0.0026 ï0.0022 1.6580 ï0.0002 0.0015 1.7221 

 (0.276) (0.269) (6.805) (0.274) (0.264) (7.478) (0.274) (0.264) (7.521) 

 [0.060] [0.089] [0.152] [0.057] [0.072] [0.125] [0.055] [0.063] [0.119] 

ɝ = 1.0 0.0235 ï0.0440 1.9432 0.0029 ï0.0035 3.4263 0.0007 ï0.0004 3.5210 

 (0.288) (0.293) (13.154) (0.287) (0.289) (14.502) (0.287) (0.288) (14.599) 

 [0.058] [0.084] [0.156] [0.056] [0.070] [0.130] [0.054] [0.064] [0.125] 

Root-mean-squared errors in parentheses. Ŭ = 0.05 rejection rates in brackets. All statistics based on 50,000 replications. Sample size = 50. Bootstrap 

corrections based on 1,000 parametric bootstrap replications. 

  



23 

Table 2. Bias, rootïmeanïsquared error, and Ŭ = 0.05 rejection rates of estimators of GEV distribution 
 ML/Wald Cox-Snell-corrected BS-corrected 

 ɛ ln ů ɝ z.01 ɛ ln ů ɝ z.01 ɛ ln ů ɝ z.01 

ɝ = ï0.5 0.0230 ï0.0162 ï0.0361 ï0.0725 0.0230 ï0.0162 ï0.0361 ï0.0723 0.0005 0.0013 0.0016 0.0372 

 (0.156) (0.123) (0.112) (0.150) (0.156) (0.123) (0.112) (0.151) (0.156) (0.121) (0.110) (0.167) 

 [0.063] [0.055] [0.065] [0.228] [0.063] [0.055] [0.066] [0.228] [0.064] [0.047] [0.070] [0.087] 

ɝ = ï0.3 0.0198 ï0.0223 ï0.0243 ï0.0910 0.0175 ï0.0201 ï0.0209 ï0.0663 ï0.0005 ï0.0006 0.0042 0.0706 

 (0.159) (0.117) (0.109) (0.322) (0.160) (0.114) (0.113) (0.352) (0.157) (0.114) (0.105) (0.374) 

 [0.062] [0.057] [0.067] [0.168] [0.064] [0.050] [0.078] [0.168] [0.059] [0.043] [0.051] [0.081] 

ɝ = ï0.1 0.0154 ï0.0266 ï0.0136 ï0.0641 0.0015 ï0.0076 0.0020 0.1222 ï0.0001 ï0.0007 0.0018 0.1316 

 (0.162) (0.120) (0.113) (0.749) (0.162) (0.114) (0.113) (0.809) (0.160) (0.116) (0.108) (0.799) 

 [0.063] [0.058] [0.063] [0.137] [0.064] [0.046] [0.064] [0.121] [0.059] [0.044] [0.045] [0.081] 

ɝ = 0.0 0.0141 ï0.0282 ï0.0093 ï0.0069 0.0008 ï0.0030 0.0022 0.2073 0.0008 ï0.0005 0.0005 0.2009 

 (0.162) (0.124) (0.119) (1.182) (0.160) (0.119) (0.112) (1.209) (0.160) (0.120) (0.113) (1.217) 

 [0.059] [0.058] [0.062] [0.131] [0.058] [0.049] [0.050] [0.090] [0.057] [0.046] [0.043] [0.086] 

ɝ = 0.2 0.0084 ï0.0325 ï0.0001 0.3588 0.0004 ï0.0014 ï0.0011 0.5215 ï0.0011 ï0.0014 0.0003 0.5626 

 (0.164) (0.137) (0.132) (3.003) (0.162) (0.133) (0.125) (2.944) (0.163) (0.133) (0.126) (2.998) 

 [0.062] [0.058] [0.060] [0.120] [0.061] [0.053] [0.047] [0.099] [0.060] [0.049] [0.045] [0.093] 

ɝ = 0.4 0.0073 ï0.0335 0.0072 1.6114 0.0036 0.0007 ï0.0042 1.4452 0.0009 0.0002 ï0.0008 1.6199 

 (0.167) (0.155) (0.148) (7.895) (0.166) (0.151) (0.141) (7.350) (0.166) (0.151) (0.142) (7.575) 

 [0.066] [0.061] [0.057] [0.115] [0.065] [0.054] [0.051] [0.106] [0.064] [0.052] [0.046] [0.100] 

ɝ = 0.6 0.0045 ï0.0348 0.0162 5.8214 0.0044 0.0021 ï0.0055 4.2316 0.0004 0.0012 0.0001 4.9093 

 (0.166) (0.174) (0.165) (22.452) (0.165) (0.171) (0.156) (19.435) (0.165) (0.171) (0.158) (20.588) 

 [0.063] [0.059] [0.053] [0.114] [0.062] [0.053] [0.049] [0.116] [0.061] [0.050] [0.044] [0.109] 

ɝ = 0.8 0.0014 ï0.0387 0.0240 18.1530 0.0045 0.0008 ï0.0093 11.3057 ï0.0011 ï0.0007 ï0.0002 13.8995 

 (0.166) (0.197) (0.185) (61.794) (0.166) (0.194) (0.173) (49.222) (0.165) (0.194) (0.176) (54.080) 

 [0.066] [0.059] [0.054] [0.117] [0.064] [0.053] [0.049] [0.128] [0.064] [0.051] [0.045] [0.119] 

ɝ = 1.0 0.0020 ï0.0384 0.0317 56.9536 0.0084 0.0037 ï0.0151 30.8983 0.0007 0.0016 ï0.0007 41.1137 

 (0.166) (0.222) (0.206) (190.588) (0.167) (0.219) (0.189) (133.616) (0.166) (0.219) (0.195) (157.483) 

 [0.068] [0.058] [0.054] [0.122] [0.066] [0.053] [0.049] [0.142] [0.066] [0.050] [0.045] [0.130] 

Root-mean-squared errors in parentheses. Ŭ = 0.05 rejection rates in brackets. All statistics based on 50,000 replications. Sample size = 50. Bootstrap 

corrections based on 1,000 parametric bootstrap replications. 

 

  










