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Abstract

Extreme value theory models have found applications in myriad fields. Maximum likelihood (ML)
is attractive for fitting the models because it is statistically effi@adflexible. However, in small
samples, Mlis biasedo O(N') andsomeclassical hypthesis tests suffer from size distortions.
This paper derives the analytical G8rell bias correction for the Generalized Extreme Value
(GEV) model,and fort h e  mextemrsiordte multiple order statisticsi G E MUsing)simula-
tions,the papecompares this correction to bootstiagised bias correction®r the Generalized
Pareto, GEV, and GEVit thencompares eight approaches to inference with respect to primary
parameters and extreme quantiles, some including corrections. Th&n@thxcorection is not
markedly superior to bootstrdgased correctiorlhe likelihood ratio test appears most accurately
sized. The methods are applied to the distribution of geomagnetic storms.

Keywords: Extreme value theory, Generalized Pareto DistributiomeGdized Extremé&/alue

Distribution Cox-Snell, Smalsample bias, Geomagnetic disturbances

1. Introduction
Extreme value theory (EVT) has found applications in myriad fisddsnodeling everything from

product failures to bear markets to space weather. Its appeal lies in its marshalling of rigorous
asymptotic statistical theory to extrapolate distributions of extreme events from historical data. Yet
this appeatontainsa tensionamost by definition, historical data on extremes is spdvimy
EVT applicationghereforeuse largesample theory to extrapolate from small samples.

This tension manifests in one common approach in EVT, fitting the generalized Pareto
(GP) or generaled extreme value (GEV) distribution to data using maximum likeliljbtig .
ML has practical advantages. It comes with wael/eloped machinery for inference. And it natu-

rally accommodates nestationary models, in which primary parameters depend flexibtyoe



variates. But ML is biased to ordér , where( is sample sizéCox and Snell, 1968pistri-
butions of test statistics in small samples can also deviate appreciably from their asymptotic lim-
its, causing size distortions. And when performing estonadnd inference with respect to ex-
treme quantiles, these errors can play across orders of magnitude. Theasnpdd shortom-
ings of ML may help explain why researchers have developed many alterfatiZ®d distri-
butions, including method of momerftdosking and Wallis 1987 probabilityweighted mo-
ments(Landwhr, Matalas, and Wallis, 1979; Hosking, Wallis, and Wood, 1@&5alized ML
(Coles and Dixon, 1999elemental percentilégCastillo and Hadi, 1997jilikelihood mo-
ment® (Zhang, 2007)anda quasiBayesian metho(Zhang and Stephens, 200®)ost of these
methods trim the distribution of the estimators by incorporating priors about the parénieirs
sense, reducing errors pgrtially assuming them awayet except for penalized ML, none of
these alternatives easily generalizes to-stationary models. Thaternativesare thus impracti-
cal in many contexts, e.g., where seasonality andtemg trends need to lr@corporated

This paper tries téfix 0 ML instead of bypassing it, hoping to reduce its srsathple im-
perfections while retaining its practical advantages. To this end, the paper develops and tests vari-
ous postestimation corrections to Mbased point estimates ates$ts Three EVT models are
considered: the GP, for exceedances of a threshold; the GEV, for block maxima; and the exten-
sion of the GEV to multiple order statistics, such as the tagbservations in each blocknd
here labeled the GEVr. The corrections are of two main typestiaadlCoxSnell(1968)and
bootstrapbased. The Cae$nell correction for the GEV and GEVr models have not been pub-
lished, although Hosking, Wallis, and Wod®85) appear to hawerived it for the stationary
GEV.

This paper is most allied with Giles, Fgrand Godwir(2016) They computéhe Cox



Snell bias correctiofor the stationary GP, measurg impact on the bias and mesquared error
(MSE) of ML in simulations, and compate a parametric bootstrapnd other methods$lere | do
the same for the GEand GEVr, which provea muchmore complex taswith regard tahe
Cox-Snell correction. | also expand the investigation from bias to inference as well. Through
Monte Carlo simulation, | examine whether bias corrections improve the size of Wald tests of
potheses about the primary parameters, as well as extreme quantiles (such as the magnitude of a
100year flood). Finally, in broadening the scope to inference, | also test bodiaseag correc-
tions to confidence intervals, notably the biasrected ad accelerate(BC,) confidence inter-
vals of Efron(1987)

The Monte Carlo investigation produces a few surprises. While the corrections indeed re-
duce the bias of ML estimates of standard EVT model parameters, the correctionsetiabipt
reduce bias ithe estimation of extreme quantiles, whiateoften more important. As for infer-
ence, none of the corrections to Walased confidence intervals for the return level is as well
sized as the classical likelihood ratio (LR) test, althouglBtealso perfoms well for the GEV
for most positive values of the extremal inddgfined justbelow) | ndeed, the LR te
close to idealat least at the 0.05 significance level checked, lasréo cast doubt on the need for
alternatives or corrections ttassical ML.

The sections of thipaperdefinethe EVT distributions of interest, provide a general recipe
for Cox-Snell corrections for these distributions, report Monte Carlo simulations of these a

more-established corrections, and illustrate withagplication to geomagnetic disturbances.

2. Extreme value distributions
The generalized Pareto (GP) distribution is used to model exceedances over a t(fPedtarids,



1975) such as observations in thght tail of an empirical distribution. The cumubegi distribu-

tion function (cdf) can be written

where

Q i f o7
The threshold® is not listed as a parameter @ because itannot be identified biylL esti-

mation. The support of the GP is restricteddto ‘* and, if, mtoa * ,j,.We take

1 ] ratherthan, as the primary scale parameter because this is more natural when extending to
nonstationary models in which the scale parameter may déjieeakly) on covariates. The ex-
tremal index, is usually of primary interestince it determines the shape of the tail, hence the
frequency of extremes.

Using subscripts to indicate differentiatiave can write th&P probability density func-
tion (pdf) as

Q o Ih 0 D
where we note thab o j,.

Just as the family of normal distributions const#uke asymptotic model for averaged
random variables, and is closed under taking of averages, the GP family is closdduraldc i ng o f
t ai | sleftéruneatiog. In particular, itx "O0‘H [ h and* *,thend * X
“x "0 AT, ,* * h .This provides intuition for the GP as an asymptotic model for
tail distributions.

Using the theory of point processes, several distributions can be derived from the GP for

to modelorder statistics of large blocks of dé@oles, 2001)For exampleif some member of



the GP family is a good model for the right tail of some unknown distribution, then one can com-
pute the probability that in a block of, say, 100 draws from the full distribution, exactly one ex-
ceeds an extreme levél This leads to a odel for block maxima, namely tlyeneralized ex-
treme valugGEV) distribution,whose cdis:
O @A jR Q
wherenow' i s a directly estimabl e pBar afineft,erm. The
andto * T, hb if , 1 andisunboundedif Tt The pdfis:
" NAJR Q o )
More generally, we can model the largest observations in a blofeissman, 1978)
Label themd & MR, indescending order. Defining in analogy withé above,
the joint pdf for 0 is
M oenNAJTh Q B o) (3)
The corresponding cdf has no closed f¢@oles, 2001)
Finally, in working with the GEVr, it will be useful to have the model for tHeorder
statisticabne whi ch we :cal | AGEV(r)o
0 anAJh Q B —0
Differentiating, he pdf works out to
Q annA fh —Q o 0
where 3 t is the gamma function.

3. Computing the Cox-Snell bias estimate for the GP, GEV, andGEVr
Cox and Snell (1968) derive a formula for tbhe( bias of the general maximum likelihood

estimator (MLE).To state it, dfine these matrices of secerhd thirdorder cumulants:

€ %l D
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where U is the likelihood,P is the vector of parameter8, is the gradient operataand expec-
tations are taken over the distribution of the d&teen, in the formulation of Cordeiro and Klein
(1994), the Co¥Snell biasof the MLEIs
A E E gy -8 OAA 4

Given a likelihood model and an ML estima®ethebias can be estimated analytically,
by calculatingé , € j,and€ at Pd though this can be quite complicaiadpractice Or the
bias can be estimated through bootstiraggHorowitz, 2001), which is algorithmically simpler
but more computationally intensive. In this case, the parametric bootstrap, which draws from the
distribution determined byp, is preferred over a ngparametric botstrap that resamples the
data, beause the parametric bootstiaeves more precise in Monte Carlo simulations (Horo-
witz, 2001).

The analytical CosSnell and parametric bootstreprrectionsarebothdeveloped and
tested here for EVT distributions. In both methods, having obtaibetestimate /A wecom-
putethecorrectedVIL estimatorP P A The supplement develops a general approach to
computing the CoxSnell correction for the GP, GEV, and GEYlodels, with an extension to
nonstationary models. The procedure proves complex enough for the GEV and GEVr that the
stepsare not combineahto a single formula. Rather, an algorithmic approach is proposed and im-
plemented, which expressed second and therivatives ofl D as linear combinations of terms
of acommonform. Then a formula is derived for the expectation of such terms.

Moving from estimation to inferencanalyticalcorrections that incorporate third or

higher moments have also been depetbfor standard test statisticthelikelihood ratio (LR),



theWald, andhe Rao/score/Lagrange multipleerin order to bring their smaiample distribu-
tions closer to the asymptotic. ones (Bartlett, 1937; Cordeiro and de Paula Ferrari, 1991).
However these appear even more complicated to apply to EVT distributions than tt&n€lbx

bias correction, and are not investigated here.

4. Testing
To test the efficacy of these analytical bias corrections and compare thatartatives with

respect to estimatn and inferengd run Monte Carlo simulations. Adimulated distributionare
stationary, with* 1 ] 1 , ranges from 1@® to p8t in increments of 0.1. For each
value of , , and for each of the GP, GEV, and GEVS5 distributions, | generate 50,00fopseu
dom data sets of size 50. (Varying sample size affects only the scale of the effects, not the quali-
tative patterns.)fo each data set, | apply three estimators, reporting average anteaet
squared error:

T ML

1 ML with the CoxSnell analyticatorrection.

1 ML with parametric bootstrdased bias correction, based on 1,000 replications.
All estimation isperformed with myfextrem® package for Stafavhich is available on the Sta-
tistical Software Components archive

Following Giles, Feng, anGodwin (2016) | only apply the Co8nell correction when

the ML estimate, exceeds T&. As explained in the supplemettie CoxSnell correction di-
verges as 8 pj 0. In practice, the smaller the sample, the farther from this limit does the diver-
gence beg. As the test results will show, & is a reasonably conservative threshold for mak-
ing the correctionimposing this cubff leaves an artifact isimulations a true value of,

1@ can lead to some replications withbelow 1@& and some above, shdt Monte Carlo



resultsmix together correted and uncorrected estimates, and variance rises around this value.
In addition, the simulations examine the impactrdarence which matters morthan
biasin most EVT applicationdn particular, inference wh respect to extreme quantiles (return

levels) is usually central. For an EVT cd and occurrence probabilityy, the return levelad k

‘O p n works outto
a« . T 5)

where for the GPp  pj i}, and for the GEV and GEY 6 pj1 Tp 1 . Note that for
the GP, 1) is the probability of an event exceeding the magnitadeconditionalon its inclusion
in the tail distribution being modeled. So a givenimplies a more rarified stratum for the GP
than for the GEVand GEVr The simulations therefore investigate confidence intervalgifor
under the GP andg  under the GEV and GEVr.

The following procedures are used to construct confidence intervals of n@@5sig-
nificance for* , 1 ], ,,andd :

1 The MLE, followed by Wald tests, using the delta methoddfar

1 The same, after Ce8nell correction to the point estimates of the primary parameters.
1 The samehut insteadhfter bootstragbased correction to timintestimatesndcovariarce
matrix of the primary parameter@potstrapzo0 or fAboot strap correct
pr ox i mhafton, 1O81HThe bootstrapping is parametric.
1 Bootstrap percentildased without bias correction (bootstgzgrcentile Efron, 1987) For
a significane level| d 0.05 in this cas® confidence intervals spametweenthe p
Pp | Jjgand p | jc¢ quantiles of thdootstrappe@mpirical distribution.

1 That, with bias correction, giving the biasrrected percentile (BC) method of Efron



(1987)
1 That, withacceleration giving the biascorrected with acceleratioBCa) method of Efron
(1987) This like the CoxSnell correction, incorporates information from third moments.
1 The Rao score/Lagrange multiplier t&€sarrying this out requiresHfiting the MLE while
imposing null constraints. Constrainirig is normally difficult since it is nonlinear in the
primary parameters. Therefore, for this step, the models are reparameterifg8dinia

terms of ', & ,and, (Coles, 2001)

1 A likelihood ratio test, imposing the null in the same way.
These tests are chosen in part for practicality: essentially all are readily extended to nonstationary
models, in vinich the primary parameters depend linearly on covariates. The one caveat is that the
reparameterization required to perform the Rao and LR tests make it impossible td njodsd
linear covariates, since it removed from the model; as partial compensati@ould be so mod-
eled instead.
Results are prestad graphically irFigures 13 and numerically iMables 13. Thetop
two rowsof the first columrof Figurel confirm thatunderthe standard parameterization of the
GP, ML is upwarebiased forl ] and downwarebiased for, (Hosking and Wallis, 1987)
Both the CoxSnell and parametric bootstrap i@mtions reduce this bias by an order of magni-
tude Meanwhile, heyhardly affect rootmeansquared error, except that for 1@, the Cox
Snell correction increases RMSAS discussed abave
Moving to estimation of a return levedg , brings some surjses. (See bottom rowf
Figurel. Becaused; grows rapidly with, hfor legibility, its bias and RMSHre divided by the

true value of0g  before graphing.) Despite substantially reducing bias in estimatibnjofand



., heither correction clearly improves estimation of the derived paramgteiWhere ML under-
estimates for, * m& and overestimates otherwise, the corrections lead te oroversal over-
estimation. Meanwhile, the correctiosigghtly increase RMSE.

We look next at the performance of these and additional corrections on inference, and also
bring in the classical Rao and LR methods for comparBon] ] (top-right of Figurel), the
ordinary Wald test after classical ML only slightly ovejects across the full range for Cox-

Snell bias correction worsens its performance,for & and improves it for, T&. For boot-
strapbased bias correction, the cramger pointto improvements at, 1@t The two other
bootstrapbased inference methods, BC &, perform similarly. As for classical methods, the
Rao tesafter uncorrected Mkonsistently performs worse than the Wald while the LR test con-
sistently performs betteffor the, parameter (last columns!®2ow of Figure1), the Wald

proves more undesized, which leaves more room for the other methods to improve on it. Essen-
tially all alternative do improve on it when 1, except for the Ra@d\rguably performance in

this range matters more than performance whenTt, sine when the extremal index is nega-

tive, the GP puts a hard upper bound on extreme behavior.

Finally, we examine the reliability of inference with respecto. See thdottom right
of Figurel as well asTable4. While boththe CoxSnell and the bootstrapbiascorrections im-
prove coveragesuttingthe Waldbasedejection rate from 0.15 twughly0.10for positive , ,
both are surpassed by other meth@daong thebootstragbased method8Ca performs best for
, T, although even it tends to oveject. The LR test does besterall being sized close to the
ideal across the full range of values far

The story issimilarfor the GEV and GEVrgeeFigures 2and3, Tables 2, 3, 5, angd.6

The carections indubitably reduce bias for the primary parameters while costing little in RMSE
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But they do not substantially improve test size for the primary parameterthe derived param-
eter ¢g , they reduce biaat high values, but again fall short of other metheken it comes to
inference. Notably, thBC, correction now does as web ¢he LR for, 1t (bottom right of the

two figures).

5. Application
The sun frequentlgmitsclouds of magnetically charged plasméich arecalled coronal mass

ejections (CMEs). Some collide with the eamindwith enough speed tgeneratdargescale
perturbations and local turbulence in the magnetic field, especially at high latitudes. Some experts
have warned that industrial civilization is vulnerable to a majgre o m a gjonmgd the Achilles
heels includinghigh-voltage power transfmers andglobal positioning system (GPSatellites
(Baker et al., 2013)Notable storms in thandustrialera include the onign March 1989, which
disabled two large transformers in Québec and caused askeageblackout for ~12 hoyrand
t he ACar r r i ngt(Riley20E)Wbichtwasdets walldn&a8ured, but generally thought
to be stronger.

Several authors have applied EVT methtmdsstimate recurrence rates of such extreme
eventgTsubouchi and Omuy2004; Thomson, Dawsorand Reay, 201 Riley, 2012; Kataoka,
2013. Tsubouchi and Omurfit the GP and GEV to the stortime disturbance indexDg),
which measures the hourly average depression in the magnetic field at the surface of the earth in
the equatorial region. THas: beganin 1959 andhttained its record low during the 1989 storm, at
1589 nanoteslar(T). Tsubouchi and Omura estimadke return rate for this strength level using
ML and perform inference using Wald tests.

Here, | extend tht analysisn several ways. ¢ontinuethe Ds; series forward from 2003 to

2014.And | rectify a discrepancy between the method$safbouchi and Omuras described,

11



and as carried oubpecifically,Iid ec | ust er 0 Dsneadingsaexceedingd0® nT it wo

absolute magnitude whin 48 hours of each other are considered part of the same whese
magnitudds taken to be thiargestDs within its duration® This filtrationis designedo reduce
serial correlationApplying it to the data through 20¥4elds 373 events, @n averagé.46/year.
| focus on the return rate for events surpasg8%) nT,which isSiscoe, Crooker, and Clades
(2006)estimate for the great Carrington evehi859

To select the lower threshdidr the GRmodeledsutsample | follow a procedurede-

scribedin Coles (2001)The mean exceedance of a0* A ] distribution over its lower limit

“is ,] p , .Recall that lefitruncaing such adistributionat * yields another
one, 0'H 1, ,° “ R . Itfollows that lefttruncating a GP distriltion raises the mean
exceedance, , ° “ jJ p ., .Asaresult, when modeling the tail of an unknown distri-

bution,once the threshold is high enough thatl®E behavior has set jmisingthe threshold
furthershould affect the mean exceedance ofdéimeaining observations linearly. A mean resid-
ual life plot (not shown)which computes the me&n: exceedance as a function of threshold,
suggestthat linearity sets in abD}| = 150. 133 of th873 events clear this threshold, and they
constitute thesubsample for EVT modeling.

GP modeling results appea Table7. Fitting a stationary modéd thissutsamplewith
ML (column 1) yields a point estiate for, of 0,022, with a Wald standard error of 0.103, which
makes, indistinguishable from 0. In other words, we camegectthe hypothesis that extreme
geomagnetic disturbances are exponentially disgdihe bottom of column 1 presents several

derived statistics and tests. First, we see that a-faited power law distribution, whicérisesn

! The discrepancy became apparent in replication and one of the authors confirmed it.

12



the GP family when, * ,, canbe confidently ruled outy a Wald testThisfinding chal-
lenges thgpowerlaw distribution assumption iRiley (2012) and Kataoka (2013)leanwhile,

the model fit implies a 10@ear return level of572nT, essentially the same as that of the 1989
storm And it points toa 0.039%/decade return rate for Carringtized events.

Next, | experimentally add covariates to control for factors that may influence the fre-
guency and severity of geomagnetic disturbances: tyedrlsun spot cycle, which is loosely as-
sociated with CME activityGopalswamy, 2006and a semiannual cycle wipeaks at the equi-
noxes, when CME impacts most disrupt the geomagnetic field, thiestariables are added as
predictors ofl ] ,thenof, AT 1 Od ATGA. In neither casedlthey significantly increase
the explanatory power of the modatcording taVald and LR test&he latter reported in the
fiHo: exclude covariatés r o w o f. Cotuinred retuend tb the) stationary model and applies
the CoxSnell correction to the point estimates. This modestly increases thed08torm mag-
nitude, toi 593 nT, andnearlydoubles thestimatedeturn rate of Carringteacale storms, to
0.071%/decade.

| turn next to inferece about such extremésgure4 presents points estimates ard/®
confidence intervals for the 18@ar geomaggtic stormmagnitudeusing all methods tested in
the previous sectioithading depistp values and red dots show point estimates. The fguge
gests that inferences basedtloa Wald test coultb a degreéeed complacencyhere the Wald
95% confidencenterval covers ~25@00 nT, the LRbased one, which the simulations suggest is
better sized, spans ~3Z%0 nT. Among the other methods, B€. approximates the LR most
closdy.

Finally, I flip the empirical question for inference, frahe return level for a givereturn

rate(what is a once-century storm?jo the return rate for a givesturnlevel (how often does a

13



Carringtonscale event recurigure5 plots the empirical complementary ¢dé., one minus
thecdf) of the373-event samplestarting ats] = 120nT. Riley (2012)fits a power lawto a sim-
ilar dai set, starting dt20, an analogous fit is depicted here in purplee CoxSnell corrected
GP fit reported imable7, column 4, isalsorenderedin orange Then, rather as the previous sec-
tion reparameterized EVT models to repldcd with the return levelx , the GP isiow repa-
rameterized to introducq as a primary parameter, holdirig fixed. This reformulatioriacili-
tations imposing hypotheses abthéreturn rater) for a given return levelr , and sallows

one to perform inferenagith respect to therasing the LR testConfidence intervals derived by
inverting this tesat various return levelredrawnas orange diamonds kgure5. For legibility,
an inset to the figureertically magnifieghe right tail. There, we see that GP fits the historical
record better than the power law. Wheregbwer law fit implies a return rate for Carrington
scale eventsk| > 850) of 0.3%/event, or 17.6%/decade, theb@sed LR tests generate a 95%
confidence interval of [0.00%, 0.20%] per event, or [0.00%, 24]%&r decaddf major geo-
magnetic storms indeed pose risks to industrial civilization (a question beyond the scope of this

paper), then theigh end of that rang#ill represents a netnivial risk.

6. Conclusion
Both the analytical and bootstrap bias eotions succeed, in the narrow sense that in small sam-

ples, they greatly improve on ML point estimates for the primary parameters. And they do so while
staying within the flexible ML modeling framework. Both also reduceuth@ersizing of Wald-

based conflence intervals for primary parameters. The bootdiesged correction works more
reliably for negative values of the extremal index, where the analytical correction diverge

However, bias correction alone does lead to optimainference within the ML estima-
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tion framework for EVT models, especially when extreme quantiles matter most. One of the sim-
plest approaches inferencethe classical LR test, performs best across the full range of extremal
index values tested (@ to p). TheBCa also performs reasonably well when the extremal index

is positivéd i.e., when there is no upper bound on extrémespecially for the GEV and GEVr.
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Figurel. Estimator performance for GP distribution ( v fi ]
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Figure2. Estimator performance for GEV distution (.
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Figure3. Estimatomperformance for GEV5 distributio(.
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Figure4. Point estimates and 95% confidence intervals for the magnitude of 100
year geomagnetic storm (absol@tgindex, nT)
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Figure5. Complementary cumulative distribution function for extreme Dst events,
1957 2014, empirical, and as modeled by GP and power law fits
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Tablel. Bias, rootmeans qu ar e d e r.05cejection aateslof ddtimator®of GP distribution
ML/Wald Cox-Sneltcorrected BS-corrected
In G 3 Zos In G 3 Zos In G 3 Zos
3=10.5 0.0560 10.0804 10.0377 0.0558 710.0802 10.0374 0.0222 10.0179 0.0222
(0.188) (0.162) (0.110) (0.189) (0.163) (0.109) (0.210) (0.174) (0.111)
[0.056] [0.072] [0.164] [0.057] [0.073] [0.163] [0.150] [0.154] [0.127]
3=10.3 0.0519 10.0745 10.0556 0.0444 70.0649 70.0431 0.0025 0.0005 0.0348
(0.203) (0.168) (0.194) (0.213) (0.179) (0.196) (0.203) (0.160) (0.206)
[0.072] [0.108] [0.159] [0.084] [0.125] [0.157] [0.082] [0.086] [0.106]
3=70.1 0.0436 10.0650 10.0717 0.0111 710.0203 0.0165 710.0012 0.0027 0.0575
(0.214) (0.174) (0.356) (0.222) (0.188) (0.387) (0.207) (0.158) (0.380)
[0.068] [0.112] [0.150] [0.075] [0.116] [0.139] [0.057] [0.055] [0.092]
3=0.0 0.0387 10.0608 10.0786 0.0024 710.0085 0.0519 710.0022 0.0022 0.0763
(0.221) (0.183) (0.484) (0.222) (0.185) (0.524) (0.214) (0.166) (0.516)
[0.069] [0.112] [0.145] [0.069] [0.115] [0.121] [0.055] [0.051] [0.090]
3=0.2 0.0333 10.0536 10.0621 0.0014 710.0025 0.1510 710.0008 0.0021 0.1717
(0.234) (0.199) (0.925) (0.228) (0.189) (0.995) (0.228) (0.186) (1.002)
[0.064] [0.105] [0.144] [0.055] [0.058] [0.105] [0.054] [0.055] [0.094]
3=0.4 0.0280 10.0493 10.0023 0.0020 710.0034 0.3259 710.0012 0.0012 0.3567
(0.249) (0.220) (1.761) (0.244) (0.210) (1.908) (0.244) (0.210) (1.924)
[0.063] [0.098] [0.146] [0.056] [0.068] [0.110] [0.055] [0.059] [0.102]
3=0.6 0.0218 10.0435 0.2179 70.0009 70.0008 0.7444 710.0040 0.0033 0.7873
(0.262) (0.243) (3.408) (0.259) (0.236) (3.725) (0.259) (0.235) (3.750)
[0.060] [0.092] [0.146] [0.056] [0.070] [0.116] [0.055] [0.061] [0.109]
3=0.8 0.0237 10.0433 0.7831 0.0026 710.0022 1.6580 710.0002 0.0015 1.7221
(0.276) (0.269) (6.805) (0.274) (0.264) (7.478) (0.274) (0.264) (7.521)
[0.060] [0.089] [0.152] [0.057] [0.072] [0.125] [0.055] [0.063] [0.119]
3=1.0 0.0235 10.0440 1.9432 0.0029 710.0035 3.4263 0.0007 10.0004 3.5210
(0.288) (0.293) (13.154) (0.287) (0.289) (14.502) (0.287) (0.288) (14.599)
[0.058] [0.084] [0.156] [0.056] [0.070] [0.130] [0.054] [0.064] [0.125]
Rootmeansquared errors in parenthesds.0.05rejection rates in brackets. All statistics based on 50,000 replications. Sample size = 50. Bootstrap
correctiors based on 1,000 parametric bootstrap replications.
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Table2. Bias, rootmearis qu ar ed e r.050efection adesdf edlimators @f GEV distribution
ML/Wald Cox-Sneltcorrected BS-corrected
€ In G 3 Zo1 € In G 3 Zo1 € In & 3 Zo
3=10.5 0.0230 70.0162 70.0361 10.0725 0.0230 10.0162 170.0361 10.0723 0.0005 0.0013 0.0016 0.0372
(0.156) (0.123) (0.112) (0.150) (0.156) (0.123) (0.112) (0.151) (0.156) (0.121) (0.110) (0.167)
[0.063] [0.055] [0.065] [0.228] [0.063] [0.055] [0.066] [0.228] [0.064] [0.047] [0.070] [0.087]
3=10.3 0.0198 70.0223 70.0243 10.0910 0.0175 1710.0201 170.0209 10.0663 10.0005 710.0006 0.0042 0.0706
(0.159) (0.117) (0.109) (0.322) (0.160) (0.114) (0.113) (0.352) (0.157) (0.114) (0.105) (0.374)
[0.062] [0.057] [0.067] [0.168] [0.064] [0.050] [0.078] [0.168] [0.059] [0.043] [0.051] [0.081]
3=70.1 0.0154 70.0266 i0.0136 10.0641 0.0015 10.0076 0.0020 0.1222 70.0001 70.0007 0.0018 0.1316
(0.162) (0.120) (0.113) (0.749) (0.162) (0.114) (0.113) (0.809) (0.160) (0.116) (0.108)  (0.799)
[0.063] [0.058] [0.063] [0.137] [0.064] [0.046] [0.064] [0.121] [0.059] [0.044] [0.045] [0.081]
3=0.0 0.0141 70.0282 70.0093 10.0069 0.0008 10.0030 0.0022 0.2073  0.0008 10.0005 0.0005 0.2009
(0.162) (0.124) (0.119) (1.182) (0.160) (0.119) (0.112) (1.209) (0.160) (0.120) (0.113) (1.217)
[0.059] [0.058] [0.062] [0.131] [0.058] [0.049] [0.050] [0.090] [0.057] [0.046] [0.043] [0.086]
3=0.2 0.0084 70.0325 i0.0001 0.3588 0.0004 1i0.0014 170.0011 0.5215 70.0011 710.0014 0.0003 0.5626
(0.164) (0.137) (0.132) (3.003) (0.162) (0.133) (0.125) (2.944) (0.163) (0.133) (0.126)  (2.998)
[0.062] [0.058] [0.060] [0.120] [0.061] [0.053] [0.047] [0.099] [0.060] [0.049] [0.045] [0.093]
3=0.4 0.0073 70.0335 0.0072 1.6114 0.0036 0.0007 170.0042 1.4452 0.0009 0.0002 170.0008 1.6199
(0.167) (0.155) (0.148) (7.895) (0.166) (0.151) (0.141) (7.350) (0.166) (0.151) (0.142) (7.575)
[0.066] [0.061] [0.057] [0.115] [0.065] [0.054] [0.051] [0.106] [0.064] [0.052] [0.046] [0.100]
3=0.6 0.0045 70.0348 0.0162 5.8214 0.0044 0.0021 170.0055 4.2316 0.0004 0.0012 0.0001 4.9093
(0.166) (0.174) (0.165) (22.452) (0.165) (0.171) (0.156) (19.435) (0.165) (0.171) (0.158) (20.588)
[0.063] [0.059] [0.053] [0.114] [0.062] [0.053] [0.049] [0.116] [0.061] [0.050] [0.044] [0.109]
3=0.8 0.0014 70.0387 0.0240 18.1530 0.0045 0.0008 170.0093 11.3057 10.0011 70.0007 170.0002 13.8995
(0.166) (0.197) (0.185) (61.794) (0.166) (0.194) (0.173) (49.222) (0.165) (0.194) (0.176) (54.080)
[0.066] [0.059] [0.054] [0.117] [0.064] [0.053] [0.049] [0.128] [0.064] [0.051] [0.045] [0.119]
3=1.0 0.0020 70.0384 0.0317 56.9536 0.0084 0.0037 110.0151 30.8983 0.0007 0.0016 1¥0.0007 41.1137
(0.166) (0.222) (0.206) (190.588) (0.167) (0.219) (0.189) (133.616) (0.166) (0.219) (0.195) (157.483)
[0.068] [0.058] [0.054] [0.122] [0.066] [0.053] [0.049] [0.142] [0.066] [0.050] [0.045] [0.130]
Rootmeansquared errors in parenthedds.0.05rejection rates in brackets. All statistics based on 50,000 replications. Sample size = 50. Bootstrap
correctiors based on 1,000 parametric bootstrap replications.
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